The role of univalence in the homotopy interpretation of type theory – mathoverflow.net 15:06 Posted by Unknown No Comments In Martin-Löf type theory with identity eliminator $$ J : \prod_{B:\prod_{x,y:A}(x=y)\to\mathcal{U}}\left( \prod_{x:A}B(x,x,\mathrm{refl}_x)\to \prod_{x,y:A}\prod_{p:x=y}B(x,y,p) \right) $$ ... from Hot Questions - Stack Exchange OnStackOverflow via Blogspot Share this Google Facebook Twitter More Digg Linkedin Stumbleupon Delicious Tumblr BufferApp Pocket Evernote Unknown Artikel TerkaitDead-Man's Switch Cryptography? – crypto.stackexchange.comBlender Theme for OLd People – blender.stackexchange.comWhat kind of tyranid is this? – scifi.stackexchange.comAn ionic compound dissociates into 3 ions of 3 different elements? – chemistry.stackexchange.comTerm for a side motor entrance? – english.stackexchange.comSubstitute some 1s with 0s in random list – mathematica.stackexchange.com
0 Comment to "The role of univalence in the homotopy interpretation of type theory – mathoverflow.net"
Post a Comment