A problem to be solved using integration by parts. – math.stackexchange.com 09:01 Posted by Unknown No Comments Assume all functions of the form $(0,1)\to\mathbb{R}$. Given that $$ f(x) - \lambda_1 f''(x) = 0 $$ and $$ g(x) - \lambda_2 g''(x) = 0, $$ for all $x \in (0,1)$. Also, $$ f(0) = f(1),\qquad f'(0) = ... from Hot Questions - Stack Exchange OnStackOverflow via Blogspot Share this Google Facebook Twitter More Digg Linkedin Stumbleupon Delicious Tumblr BufferApp Pocket Evernote Unknown Artikel TerkaitIs it a Sphenic Number? – codegolf.stackexchange.comWhere's the story with "...not in this generation, no; but in 2 or 3 generations, yes" located? – philosophy.stackexchange.comWhy are these pistons pushing? – gaming.stackexchange.comWas Ra's al Ghul nearly immortal in the Dark Knight trilogy? – movies.stackexchange.comBlender resizing my image in half – blender.stackexchange.comHow does Russia define religious extremism? – politics.stackexchange.com
0 Comment to "A problem to be solved using integration by parts. – math.stackexchange.com"
Post a Comment