Compact Metric Spaces – math.stackexchange.com

Let $(X,d)$ be a compact metric space, show: i) For any $\epsilon>0$ there are $n \in \mathbb N$ and $ x_{1},..., x_{n} \in X $ so that $X=\bigcup_{j=1}^{n}B_{\epsilon}(x_{j})$ My thoughts so far ...

from Hot Questions - Stack Exchange OnStackOverflow
via Blogspot

Share this

Artikel Terkait

0 Comment to "Compact Metric Spaces – math.stackexchange.com"